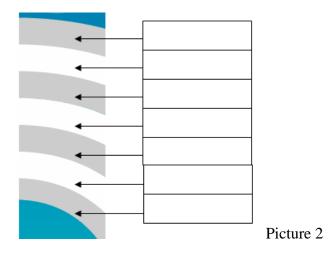

THE SCECTRUM OF LIGHT

During this lesson we are going to:

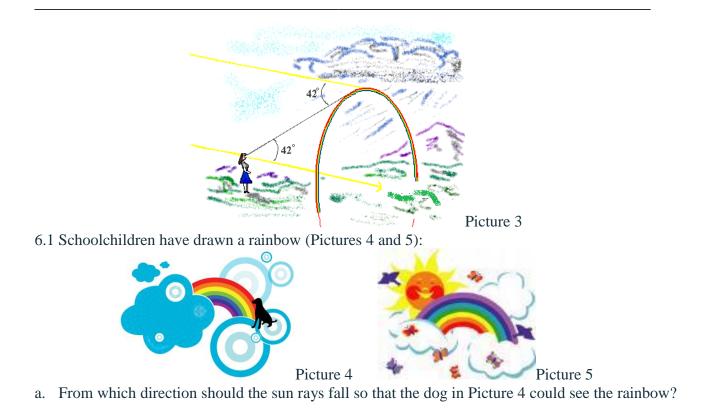
- *learn about the colour composition of light and the colours of things;*
- learn the colours of the spectrum in their order.
- 1. Open the programme "Crocodile Physics":
- 1.1 In the Optics module select a triangular prism and a source of parallel beams. Place them in the way shown in Picture 1.



- 1.2 When the yellow beam of light falls into the prism, the colour of the beam coming out of the prism is _____;
- 1.3 Change the colour of the beam of light into red, green, blue.
- 1.4 Draw the conclusion:
- 1.5 Change the colour of the beam of light into white. What has happened to the outcoming beam of light? What conclusion can you draw?

1.6 How is this phenomenon called?

- 1.7 Physicists call the band of seven colours ______, and in spoken language it is called ______
 - 2. Open MO <u>http://mkp.emokykla.lt/gamta5-6/lt.php/mo/1127/#grotuvas</u> and check whether your answers are correct.


3. Find colours in picture 2:

4. Open the programme:

<u>http://celebrate.ls.no/english/animations/science/regnbuen_fargelegg.swf</u> and check whether you know the colours of the spectrum in the right order.

- 5. What colours are necessary for the rainbow to appear in the sky?
- 6. Explain Picture 3:
- 6.1 Where is the sun with regard to the observer?
- 6.2 Can we observe the rainbow at midday, when the sun is high above the horizon? Why?

- b. Why did a physics teacher who saw Picture 5 say that the picture is "INCORRECT"?
 - 7. Open MO <u>http://mkp.emokykla.lt/gamta5-6/lt.php/mo/1483</u> and see what happens when we add 7 colours of the spectrum of light._____
 - 8. Open MO <u>http://mkp.emokykla.lt/gamta5-6/lt.php/mo/1128#grotuvas</u> and answer: Why do we see coloured objects?
 - 9. Which of the seven colours of the spectrum of light are considered as the main colours?
 - 10. Open the programme <u>http://resources.eun.org/xplora/xapplet01.swf</u> and add the following colours:

RED + GREEN =
RED + BLUE =
BLUE + GREEN =
BLUE + GREEN + BLUE =

11. Open the programme <u>http://resources.eun.org/xplora/xapplet02.swf</u> or <u>http://phet.colorado.edu/simulations/sims.php?sim=Color_Vision</u> and check the colour of beem when it goes through the filter of light:

beam when it goes through the filter of light:

a)	RED beam going through a GREEN filter:
b)	RED beam going through a BLUE filter:
c)	RED beam going through a RED filter:
d)	RED beam going through a COLOURLESS filter:
e)	WHITE beam going through a RED filter:
f)	SKY-BLUE beam going through a RED filter:
g)	YELLOW beam going through a RED filter:
h)	VIOLET beam going through a RED filter:
i)	SKY-BLUE beam going through a COLOURLESS filter:
j)	SKY-BLUE beam going through a VIOLET filter:

Draw your conclusion: _____

12. For your HOMEWORK, compare the composition of the colours of light with the colours of painting, discuss your ideas with your arts teacher: <u>http://mkp.emokykla.lt/gamta5-6/lt.php/mo/1136</u>.